中国海光

第11卷 第11期

CCD 用于激光参数测量

周复正 沈丽青 竺庆春 朱 俭

(中国科学院上海光机所)

提要:测量了 CCD 的动态范围,做了 CCD 和微机连接实验,实现了自动化显示。用 CCD 测量了激光参数。

CCD for laser parameter measurement

Zhou Fuzheng, Shen Liqing, Zou Chingchun, Zhu Jian (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: The dynamic range of CCD has been measured, experiment of CCD in connection with microcomputer performed and automatic display realized, and laser parameters have been measured by means of CCD.

一、CCD 特性测量

CCD 用于脉冲激光测量原理和一维 CCD 测量激光场强度分布,见文献[1]。对 CCD 在激光测量中的进一步应用,其动态范 围是一个重要参数。目前国外 CCD 的动态 范围高达 2500:1,比其它空间强度测量手 段,如硅靶管摄像法要高 10~20 倍^[23]。我们 用高斯光束测量了国产 1728 位一维 CCD 的 动态范围。

1728 位一维 CCD 器件为表面沟道三相 多晶硅交叠栅结构,光敏元中心间距12 微 米,总长度为2厘米。测量 CCD 的动态范 围,通常采用阶梯减光板,或在光路上更换不 同衰减片,但是这种方法很难准确测定100:1 的光强变化。 使单模 He-Ne 激光 辐照 CCD, 得 到 激 光空间强度分布如照片点线所示。高斯型激 光场强分布可按下式计算:

 $I = |F(x)|^2 = A^2 e^{-2(x/\omega_0)^2}$

式中 F(x) 为振幅, ω_0 为 1/e 振幅时光束宽度, 计算值如图 1 实线所示。由比较可知, CCD 动态范围优于 100:1。这和国外 CCD 相比, 尚有一定差距。动态范围的限制主要来自于器件的暗电流, 它是衬底体内和 Si-SiO₂ 界面热产生中心所附加的载流子的积累。由耗尽区电子自价带至导带的本征电流、少子在中性区内的扩散电流、体内复合——产生中心在耗尽区产生的电流和禁带间界面态复合——产生过程引起的电流组成, 总约为20 毫微安/厘米², 形成~4 毫瓦的噪声电压输出。因此, 扩大 CCD 的动态范围, 关键在

收稿日期: 1983年10月5日。

图1 CCD 动态范围测定曲线

于提高芯片材料质量和改进芯片工艺过程。 尽管如此, COD 比国产硅靶管 TV 法(其动 态范围仅为 30:1)或其他空间强度测量法要 优越得多。

二、CCD 和微机的连接

为了实现 CCD 对激光参数的自动测量 和显示,我们做了 COD 和微计算机的连接实验。使用的是 TP-801 单板机和 ADC 0809、 DAC 0832 等片子。做了三路过程通道和接口,其中一路为 *A*/*D* 通道,其它二路为 *D*/*A* 通道,编制了相应的应用程序。整机框图如 图 2 所示,程序流程框图如图 3 所示。

从 CCD 来的信号是一组被激光强度调制的序列脉冲电压,在送入 *A*/D 通道前,做了二种处理,一种是将信号放大倒相后送入

图2 整机框图

A/D 通道,另一种是放大倒相后经包络选择 器后再送入 A/D 通道。前一种信号由于受 A/D变换时间及微机机器码操作时间的限制, 有时会产生较大的误差,使输出波形失真;后 一种方法由于包络选择器对某些频率响应的 失真,也会使输入 A/D 通道的信号产生一定 畸变。在具体使用时,可根据激光参数测量 的需要而任选一种,再调整线路使达到最佳。

整机工作过程如下: 开机后执行启动等 待程序, 当 COD 给出同步讯号时, 微机执行 采样存数程序, COD 检测的激光信号经放大

b. 经包络选择器后的激光远场分布
图 4 CCD -微机自动测量激光远场分布

. 681 .

倒相(或再经包络选择器),送入 *A*/*D* 通道, 按一定采样周期送入微机内存贮。然后执行 *X*-*Y* 输出程序,将采样到的数据按一定比例 (*X* 向)经 *D*/*A* 通道输出(*Y* 向),在 *X*-*Y* 记录仪上得到被检测的相应曲线。最后执行 数据打印输出程序,从打印机上得到数字输 出打印数据。图 4 为 CCD 连微机测量的激 光远场强度分布(*X*-*Y* 记录仪输出)。

三、CCD 用于激光参数测量

A.用谐波法测量微微秒脉冲激光宽度 用光栅取样、倍频做快门,以 CCD 做实 时显示的超高速照相装置如图 5 所示。CCD 所测的空间强度波形是被测激光脉冲的自相 关函数。激光脉冲宽度可用下式确定:

图 5 微微秒激光脉宽实时测量光路图

式中 v'是 CCD 测得的高斯型光斑的半宽 度, λ 为入射光栅的激光波长, N 为光栅每毫 米距离上刻线的条数, α 为光栅 的入射激光 与出射激光之间的张角, c 为光速。 三次测 量结果如图 6 所示。CCD 得到的强度半宽 度分别为 12、21、24 毫米, 相应计算的激光 脉冲宽度为 16 微微秒、24 微微秒、26 微微 秒。脉宽变化较大。除 CCD 强度测量 有 10% 的误差外, 脉宽变化主要来自锁模激光 器本身。

图 6 二次谐波(0.53 微米)强度分布曲线

图 7 光纤受激喇曼散射谱实时测量光路图 1-Nd:YAG 激光器; 2-KDP 倍频晶体; 3-1.06 μ 衰减片; 4-光纤耦合器; 5-光纤 (GeO₂-P₂O₅-SiO₂); 6、8-透镜; 7-色散 棱镜; 9-衰减片; 10-CCD; 11-示波器

品一维 OOD 例重多级新托克取新 值 突 验光路如图 7 所示,结果如图 8 所示。测量 (下转第 669 页)

电极长度增长而增加。

2. 输出能量随气压变化

图4 输出能量随充气压强的变化 C=10000 微法; U=12.5 千伏; l-电极长度(毫米) 实验表明,封闭式氮分子激光器存在着 一个最佳工作压强,只有选择合适的充氮气 压强,才能得到理想的输出。

3. 输出能量随储能器电容量的变化

图 5 封闭式氮分子激光器输出能量随 储能电容量的变化曲线

U=10千伏; P=40托; l-电极长度(毫米)

实验结果表明,并非储能器数目越多越 好,只要容量合适,排列适当,就能得到较理

(上接第 682 页)

了六级谱,受激散射谱峰位置与用 GDM1000 双光栅单色光计测量一致。但是 CCD 测量 的各级谱强度曲线出现交叠现象,有两个原 因:① 环境背景光和 CCD 本底噪声叠加 形成一定电平输出,在谱强度曲线中。② 由 于强光的非线性效应,各种频率的强光在光 纤中发生复杂的混频效应,使光纤输出光谱 成为准连续的复合谱分布。 想的输出。

4. 脉冲宽度

封闭式氮分子激光器的脉冲波形和脉冲 宽度也是一个重要的参数,脉冲波形照片见 图 6,从照片看出激光脉冲宽度约4毫微秒。

图 6 激光脉冲波形

四、能量测量和典型性能指标

采用中国计量科学研究院的能量计测量 能量,并与中国科学院物理研究所提供的能 量计的测量结果相对比。

放电电极长度 320 毫米, 间距 8 毫米, 储 能器容量 10×1000 微米, 充气压强 50 托的 样管在工作电压 10 千伏时测得输出 能量 为 676 微焦耳, 脉宽 ≈4 毫微秒, 峰值功率大于 150 千瓦, 重复频率 0~50 次/秒可调, 输出 稳定度 ±7%。

激光器样机已在有关部门实际应用,反 映效果较好。使用时间已超过半年。

在实验过程中,得到于步云、童镇溥、高 福源、金德运、黄国松、陈泽尊等同志的帮助, 在此表示感谢!

参考文献

- [1] 周复正, 竺庆春等; 《中国激光》, 1984, 11, No. 3 183.
- [2] 铃木义二:"计测用撮像デバイスの変遷あよび开發 の动向",日本浜松テレビ株式会社。

.669.